
A Programmable Image Compression System

Paul M. Farrelle

Optivision, Inc.
2655 Portage Bay Ave., Davis, CA

Abstract

This paper describes a programmable image compression system which has the necessary flexibility
to address diverse imaging needs. It can compress and expand single frame video images
(monochrome or color) as well as documents and graphics (black and white or color) for archival or
transmission applications. Through software control the compression mode can be set for lossless or
controlled quality coding; the image size and bit depth can be varied; and the image source and
destination devices can be readily changed. Despite the large combination of image data types,
image sources, and algorithms, the system provides a simple consistent interface to the programmer.
This system (OPTIPACTM) is based on the TI TMS320C25 digital signal processing (DSP) chip and
has been implemented as a co-processor board for an IBM PC-AT compatible computer. The
underlying philosophy however can readily be applied to different hardware platforms; and by using
multiple DSP chips or incorporating algorithm specific chips the compression and expansion times
can be significantly reduced to meet performance requirements.

Introduction

The goal of image data compression is to squeeze out the redundancy in a digitized image (B
bits/pixel) such that the compressed image can be represented by b < B bitdpixel, but can later be
expanded to give an output image containing B bits/pixel. The ratio B/b is called the compression
ratio (CR) and the challenge is to maximize the CR given a set of constraints. Typical constraints
are: IossIess fully reversible compression so that the output and input images are bit for bit identical;
a fixed maximum execution time; a minimum subjective output quality level.

Image data compression has become an integral part of imaging systems despite improvements in
transmission and storage capacities. This is because imaging systems continue to use higher
resolution sensors and the size of image data bases is growing rapidly. In some cases it is
economically attractive to incorporate compression into an imaging system, while other times its use
is mandatory to achieve the overall system specifications.

In this paper we describe a compression and expansion system which is rapid but does not operate at
real-time rates. We have previously reported a compression system suitable for real-time TV and
videoconferencing applications [11. The current system processes each frame without reference to
any other frame and is therefore an intrafmme, or single frame, coder. Single frame imaging
applications include: telemetry, remote surveillance, image databases, picture ID systems, medical

24 1

imaging, law enforcement, electronic publishing, digital mapping, insurance claims, parts catalogs,
point of sale systems, etc. [2]. Each application has different requirements and even within a single
application there is often the need to handle multiple image data types, sources, and compression
modes. Image data types might include monochrome with 8, 10, or 12 bits per pixel; color with 16 or
24 bits per pixel; and binary images which can only take one of two values. Image sources are also
diverse and images could come from computer files, frame grabbers which can capture a single video
frame, image scanners, and communication links. Finally the application might require a lossless
compression mode, or this constraint might be relaxed to allow small differences between the output
and original images to increase the CR. In this controlled quality case there is a tradmff to be made
between the output image quality and the CR. In either case the mode can be further specified as
being high speed or high compression ratio. In the former case the algorithm is kept simple so as to
achieve a high speed compression or expansion. In the second case the emphasis is to achieve the
highest CR possible and as expected this will take longer.

It is clearly desirable to have a single system which can handle multiple image data types (binary,
gray scale, color) at multiple resolutions and provide different compression modes (lossless,
controlled quality). The overall system requirement is then to provide all of this flexibility via a
consis tent interface.

OPTIPACTM Hardware Specifications

A system has been built to provide this capability in a PC environment. It is a co-processor board for
an IBM PC/AT compatible computer and is built around the TMS 320C25 DSP chip operating at a
40MHz clock speed. Local memory consists of 32 or 64 kbytes of high speed static RAM with no
wait states. The memory is used to store the current compression application and provide a data area
where the current image window can be processed. The memory is dual ported so that it can be
accessed by both the DSP and the AT host. The AT downloads the appropriate compression or
expansion application code at the beginning of a session and then compresses an image, a window at
a time, by repeatedly loading image windows and unloading compressed data blocks. For more
exacting requirements, multiple OPTPACT% can be operated in parallel, within a single system, to
reduce the overall execution time.

Software Requirements

The major requirement was to provide a consistent interface which would be independent of the
compression algorithm, the image data type, and the image source and destination device types. A
second important requirement was to allow algorithms to be selected via descriptive terms such as
controlled quality, level 6 rather than "optimal adaptive widget coding with a threshold of 32.452
followed by customized variable length coding". This has the obvious advantage of not requiring a
user to be a coding expert, but it also provides one level of indirection so that different algorithms can
be substituted at a later time without changing high level application code.

242

Indirect Algorithm Selection Table (IAST)

To implement the descriptive approach to algorithm selection, we created an Indirect Algorithm
Selection Table (IAST). This table translates descriptive terms plus the image data type into a 4-bit
index which then maps into a specific algorithm. By combining this table with the DSP application
code, algorithms can be changed or updated without recompiling any of the user's application code.
All that is required is a new DSP application file which can readily be distributed to existing users.
The current IAST is shown in Table 1 and the algorithms which have been implemented are
characterized as follows [3]:

A10 - Lossless high compression ratio algorithm for monochrome or RGB color images. Based on
predictive and variable length coding.

A20 - High speed lossless coding algorithm for monochrome or RGB color images. This is also
based on predictive and variable length coding, but uses simpler versions to increase the speed.

A30 - High compression ratio controlled quality algorithm for monochrome images. Based on
adaptive cosine transform coding.

A31 - Same as A30 but for RGB color images.

A40 - High speed lossless coding algorithm for binary images. Based on CCI" one-dimensional
RL coding.

A50 - Lossless high compression ratio algorithm for binary images. Based on CCI" modified
READ coding.

The Universal Algorithm Interface (UAI)

The OPTIPACTM compression system is shown in Fig. 2. In this diagram the PC host memory is
represented by the central block and contains a compression application which has been linked with
the OPTIPACM run time library to form an executable image. The interface between the user's
application and the run time library is depicted as the universal algorithm interface (UAI) and
represents a set of function calls which are used to control a compression or expansion session. At
the top left of the diagram we see image data stored in a file and also a frame buffer. The display.cnf
file associated with the frame buffer is simply a configuration file needed by the system. At the top
right we see the destination for the compressed data, a second disk file. This is simply one example
configuration and different sources and destinations are of course possible. At the bottom of the
diagram we see the compression hardware and a disk file which contains the DSP applications and
the IAST.

243

Stage - I - SetuD The f i s t stage of a compression session is the setup. This is accomplished by a call
to the Setupcompress function using the following syntax:

Setupcompress(x, y , z, nx, ny, nz, color, bits, type, mode, quality)

This specifies to the compression system that we wish to process a region of size (nx, ny, nz) at offset
(x, y , z) where x and y are spatial coordinates within the current frame, and z is the frame number.
The image data type is specified by color which specifies color or monochrome and bits which is the
number of bits per pixel. Then finally the mode and quality parameters specify the compression
mode and one of the ten controlled quality coding levels: 9 (highest), 8, ..., 0 (lowest). This function
call initializes the compression code and, as shown in Fig. 3, causes the appropriate DSP application
(algorithm) to be downloaded to the compression engine.

Stage - 11 - Commess The next step is to compress the image region specified in the setup stage.
This is accomplished by a call to the Compress function using the following syntax:

Compress(read - window, write-block)

This provides the compression system with two user supplied VO functions: read-window and
write - block which are independent of the specific algorithm in use. In Fig. 4 we have:

Compress(ReadFileWindow, WriteFileBlock)

and ReadFileWindow is called by the run time library to load image data into the compression
hardware and then, after processing, the compressed data is stored using the WriteFileBlock function.
By simply changing the I/O functions, unlimited image sources and destinations can be
accommodated. For example in Fig. 5 we have:

Compress(ReadFrameWindow, WriteFileBlock)

and the image source is now a frame buffer rather than a disk file.

Since the compression hardware is unable to store the complete image on board, the read window
and write block functions are called repeatedly to process the complete image region specified in
Setup. Furthermore the window size requested each time by OP"ACTM is algorithm dependent and
is made as large as possible to minimize the overhead associated with a data transfer between the PC
host and O F T I P A P . The run time library code handles this complicated algorithm dependent
control leaving a simple consistent interface, the UAI. The complete system is shown in Fig. 6.

Performance

Overall system performance is shown below in Tables 2 and 3. In Table 2, CR is shown when
images with different data types and of differing complexity are compressed using some of the
available modes. Five different compression modes are shown: hs - high speed lossless; hc - high
compression ratio lossless; and q5, q3, q l which are controlled quality coding at quality levels of 5,
3, and 1 respectively. The corresponding execution times are shown in Table 3.

244

Typical times for compressing 512x512 monochrome images on a standard 8 MHz IBM PC/AT are:
2 seconds for the hs mode and 6 to 7 seconds for the controlled quality mode. Coding 512x512 color
images takes 5 to 6 seconds for the hs mode and 9 to 10 seconds for the controlled quality mode.
Compressing binary 8.5"xll" pages sampled at 200 dots per inch and 200 lines per inch takes about 2
seconds for hs and 4 seconds for the hc mode. Expansion times are similar to compression times.

Note that although the CR figures for hc coding are always greater than, or at least equal to, the
corresponding hs figures, they are often not significantly larger for monochrome and color images.
In fact, hc only provides substantial improvements when the hs figures are already relatively large.
Furthermore hc coding can take much longer than the other modes because it is currently
implemented on the slow PC/AT host. If the application is long term archival and the only
requirement is to obtain the highest possible CR then the hc option should always be used.
Otherwise, only when the noise level is low and there is a great amount of redundancy in the image,
that is the hs CR is 2 or more, is it usually worth spending the extra time to utilize the hc option.
Consider the color baboon and logo images as extreme examples. The baboon takes an extra 72.5
seconds to compress in hc mode rather than hs mode, but still only achieves the same CR (=1.4). On
the contrary, the computer generated logo image takes only an extra 10.5 seconds to dramatically
increase the CR from 2.4 to 23.2.

Conclusions

We have described a programmable image compression system that can handle images of any type
and size while maintaining a consistent interface. For systems requiring even faster performance,
multiple boards can be used or the consistent design philosophy can be extended to more complex
systems containing multiple processors and compression specific hardware modules.

References

1. Jain A. K., and D. G. Harrington, "A 10 MHz data compression system for real-time storage
and transmission", Appl. of Digital Image Processing VIII, hoc. SPIE 575, pp. 62-65, 1985.

2. Farrelle, P. M., D. G. Harrington, and A. K. Jain, "Image data compression in a personal
computer environment", Appl. of Digital Image Processing XI, Andrew G. Tescher, Ed.,
Roc. SPIE 974, pp. 177-186, Dec. 1988.

3. A. K. Jain, "Fundamentals of digital image processing",Chapter 11, Prentice Hall, 1989.

245

high controlled
graphics color compression quality

-~

hs t hc $ q5* q3* q l *

Monochrome images (512x512~8)
Very Simple Scene (adac) 2.8 3.9 32 45 115

Complex Scene (airport) 1.3 1.5 8 12 31
Simple Scene (f18) 1.7 1.9 14 21 49

Color images (512x512~16)
Very Simple Scene (AT&T logo 5 12x400) 2.4 23.2 31 46 111
Simple Scene (lenna) 1.8 2.0 22 35 92
Complex Scene (baboon) 1.4 1.4 10 17 61

Black and White images (1728x2376~1)
Simple Scene (CCI'IT 2) 12.5 18.8
Complex Scene (CCITT 7) 4.5 5.3

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

algorithm

A20
A30
A10
A30
A20
A3 1
A10
A3 1
A40
A30
A50
A30
A20
A3 1
A10
A3 1

Table 1 Indirect Algorithm Selection Table (IAST). The image data type (graphics, color) and
compression mode (high compression, controlled quality) are used to form a 4-bit index into the IAST
The first bit is 1 for graphics images and 0 for non-graphics images; the second bit is 1 for color and 0
for monochrome; the third bit is 1 for high compression ratio mode and 0 for high speed mode; the
fourth bit is 1 for controlled quality coding and 0 for lossless coding. The specific algorithms (A10,
A20, A30, A3 1, A40, and A50) are described in the text.

~~

t hs - High Speed lossless compression mode
$ hc - High Compression Ratio lossless compression mode
* q5, q3, ql - Controlled Quality (Quality Levels: 5 (highest), 3, 1 (lowest))

Table 2 Compression ratios (CR) for different image data types and compression modes.

246

Monochrome images (512x512~8)
Very Simple Scene (adac)
Simple Scene (f18)
Complex Scene (airport)

Modem Disk Tape

1.8 15.5
2.2 29.8
2.1 36.4

Scanner Frame
Grabber

r

5.8 5.6 2.4
7.6 6.7 3.0
10.1 8.5 3.6

CPU memory

Color images (512x512~16)
Very Simple Scene (AT&T logo 512x400)
Simple Scene (lenna)
Complex Scene (baboon)

OPTIPAC

4.5 15.0
5.9 63.5
5.9 82.4

7.5 7.1 3.5
10.4 9.0 3.6
15.5 12.0 4.1

Black and White images (1 728x2376~ 1)
Simple Scene (CCIlT 2)
Complex Scene (CCI'IT 7)

1.7 1.8
3.9 4.6

t hs - High Speed lossless compression mode
$ hc - High Compression Ratio lossless compression mode
* q5, q3, q l - Controlled Quality (Quality Levels: 5 (highest), 3, 1 (lowest))

Table 3 Compression times (secs) corresponding to CR figures shown in Table 2. Note that all times
are memory to memory on an 8 MHz IBM F'C/AT.

Figure 1 O P T P A P in a PC environment. The input (or compressed) image from a disk, tape,
image/document scanner, modem etc., is read into the main memory. It is then compressed (or
expanded) by the OPTIPAC? and routed to the output via main memory.

247

I
I

I alternative nource

I
!

ReadFrameWindor WriteRleBlock I

I OPTIPAC Run Time Library

6 compreased

image data 6

m hardware -
compress.tms 6

Figure 2 An overview of the OPTIPACM compression system.

_ - - - _ _ _ _ _ _ _ _ _ _ _ - 1 alternative nource

I 110/
I
I
I PRAMEBUPFgR

1 alternative nource

1 - n

I
I W
I PRAMEBUPFgR

User's
SetupCompren Application

6 cornpreaaed

OPTIPAC Run Time Library

t
OPTIPAC
hardware

T
Figure 3 SetllpCompress - selecting and loading the appropriate compression algorithm from
c0mpress.fm.q the DSP application library. Note that this data file also contains the IAST which is
therefore independent of the application code.

248

I alternative nource I

compressed

I

I
I
I I

I FRAMEBUFFER
L-- _ _ _ _ _ _ _ _ _ _ _ _ _ I

I 1
ReadFileWindor ReadFrameWindor WriteFileBlock

\ I I / User's
Application Compre,,

OPTIPAC Run Time Library

OPTIPAC
hardware

compress.tms €3
Figure 4 Compress - compressing an image stored in a disk file to a second disk file. Note how the
run time library uses I/O functions provided by the user to access image data. In this way any 1/0
device is readily accommodated.

I
I

oomprmld

I dtemaths lourea

I
I
I
I

J
ReadFileWindor ReadRameWindor llriteRleBlock

r
/ I - -

User's
Application compreu I If

OPTIPAC Run Time Library I
I L 1

I OPTIPAC
hardware

compm.trm 6
Figure 5 Compress - compressing an image stored in a frame buffer to a disk file. Note the similarity
with Fig. 4, the only difference is that ReadFileWindow has been replaced by ReadFrumeWindow.

249

I '

i"
OPTIPAC Run Time Library

I OPTIPAC
hardware

t
Figure 6 The complete OPTIPAP compression system showing the combined effects of the two
stages: SetupCompress and Compress.

250

